Air conditioners provide a space conditioning (cooling only or heating and cooling) service to improve the thermal comfort of an indoor space (such as a room, entire home or larger complex).

Air conditioners are also used in commercial and industrial buildings such as offices, shopping centres and manufacturing premises. 

Residential air conditioners (also referred to as heat pumps particularly in New Zealand), were first required to carry an energy label in 1987 and have been subject to Minimum Energy Performance Standards (MEPS) since 2004.

Larger three phase air conditioners (that are normally used in non-residential situations) have been regulated for MEPS since 2001 and have a voluntary labelling scheme.

Types of air conditioners

There are two main types of air conditioning products on the market:

  1. refrigerative products (using the vapour compression cycle)
  2. evaporative products.

Refrigerative products have been the main focus of the E3 Program (and are the focus of this page), however some research has been undertaken on evaporative products and they may be considered in the future.
Refrigerative air conditioners can supply a cooling only service, and reverse cycle products are capable of heating as well as cooling. The main types of products are as follows:

  • Split system (non-ducted): The most common type of household air conditioners. These products have an outdoor unit that houses the compressor and condenser, and an indoor unit that is commonly mounted on a wall. They can range in size to suit a small bedroom, to much larger products that could suit large open plan living areas.

  • Window/wall units: These products contain all parts in a single unit (rather than having a separate outdoor and indoor unit). They are installed either through windows or can be mounted into walls (where the back of the unit will be outdoors). They are typically less efficient, but cheaper to purchase and install than split systems and are suitable for cooling or heating single rooms.

  • Ducted systems: Ducted products can provide heating and cooling for an entire home or premises, delivering warm/cool air via ducts positioned in various rooms. These systems can be zoned so that only certain areas are being conditioned (for instance only living areas during the day). Two types of systems are: 

    • domestic ducted units are split systems that consist of a single outdoor unit connected to an indoor unit installed in the roof cavity or under the floor

    • commercial ducted units tend to consist of a single unit on the roof or next to a wall and are connected to the building through ductwork only. They are available in single phase and three phase power and energy labelling is voluntary for these products.

  • Multi-split systems: Multi-splits consist of multiple indoor units connected to a single outdoor unit. These can allow for different temperatures in different rooms.

  • Double/triple split system: An increasingly uncommon configuration that consists of a single outdoor unit and two or three indoor units that cannot be controlled individually.

  • Portable products: Like window/wall units, portable air conditioners are unitary systems. However, they are contained entirely within the space to be conditioned (i.e. a room) and air is drawn from indoors, cooled and then expelled outside via a single or double duct. These products are regulated under the 2019 Determination, with new energy efficiency and labelling requirements coming into force from April 2020 – for more information see  Portable air conditioners.

Solar air conditioners

Many types of solar air conditioning technologies exist, although most of them are unlikely to be found in the domestic market. Some examples include:

  • Adsorption chillers use heat (e.g. from solar thermal collectors or waste heat from other processes) to evaporate water in a vacuum which absorbs heat from its surroundings. Other materials can also be used. These tend to be used alongside large industrial processes to utilise waste heat and are sometimes encountered in commercial buildings as part of a cogeneration/trigeneration system.
  • Absorption chillers use heat (e.g. from solar thermal collectors or waste heat from other processes) to drive the refrigeration cycle. Familiar applications include kerosene or gas fired fridges. They are also used as part of cogeneration/trigeneration systems.
  • Solar desiccant cooling uses desiccant material to absorb moisture (humidity) from the air to help with cooling. Solar heat is then used to dry the desiccant material in a continuous process. The CSIRO has successfully deployed this technology commercially.
  • Solar cooling using ejectors uses heat to create a thermally driven compression process. Many researchers are looking at ways of making this process economical for commercial applications (for instance, see the Australian National University).

None of the above solar cooling technologies are covered by the E3 program. However there are two types of ‘solar’ air conditioners that can be found on the domestic market and are covered by E3 regulations.

  • Normal electrically driven domestic air conditioners of the vapour compression cycle that use photovoltaic (PV) panels to provide electricity directly to the air conditioners’ electrically driven compressor. This PV generated electricity offsets the amount of mains electricity that is required.
  • Normal electrically driven domestic air conditioners of the vapour compression cycle that use solar thermal collectors to add heat to the refrigeration cycle (although some companies claim this process helps remove heat from the refrigeration cycle).

E3 tested these last two types of solar cooling technologies, the results of which can be seen here. While the report found that the PV equipped products worked with some reservations, the solar thermal products all failed to meet Minimum Energy Performance Standards (MEPS). Further, the addition of solar thermal collectors reduced the efficiency of these products, reduced the cooling they provided and, in some cases, also reduced the heating provided. Solar thermal air conditioners work better without the solar thermal boost operating.

Regulatory requirements for air conditioners

Single phase non-ducted air conditioners for household use are regulated for energy labelling in Australia and New Zealand. All three phase and single phase ducted air conditioners up to 65kW cooling capacity are regulated for Minimum Energy Performance Standards (MEPS). Manufacturers can choose to label three phase and ducted air conditioners, but this is not mandatory. MEPS details are shown on the air conditioner MEPS page.

What are we working on?

Air conditioner regulations and labelling requirements have been updated following the Minister for Energy making the Determination in April 2019.

Refer to Current Work for more detail.

About air conditioner labels


Domestic single phase, non-ducted air conditioners must carry an Energy Rating Label. Labels on ducted systems are voluntary, so not all products will have one. You can still view their energy efficiency performance on the GEMS Registration Database. In manufacturer’s literature they may refer to energy efficiency ratios (EER) and co-efficients of performance (COP) which are the efficiency ratings for cooling and heating respectively. They are simply a ratio of the output (capacity) divided by the power input. They may also mention an annualised version of these metrics (AEER and ACOP). These are virtually the same thing, but deduct standby power. The Energy Rating Comparison Tool provides the power input and outputs for all products, even unlabelled ones. This allows you to calculate the EER and COP yourself. 

For non-ducted household air conditioners, you can still compare models online or using the free Energy Rating app, but you can also use the label. Air conditioner labels are a little bit different to labels for other household products and have some product specific information on them.  Also there is a Zoned Energy Rating Label being introduced from 2019.  While each air conditioner will only have one energy rating label during the transition period you may see both types of labels on display in a store.


The stars


Just like on other appliances, air conditioners are given star ratings, blue for their cooling function and red for their heating function (unless the appliance is a cooling only device, and then it will have the blue stars only). The more stars a product has, the more efficient it is. Air conditioners can currently be rated up to 10 stars. On the old label if a product is rated at 6 stars or less, it will not show the extra star ‘super efficiency rating’ band. You can see on the above example that this unit is rated 7 stars for cooling and 4 for heating, so only the cooling star arch has the additional coronet.

You can compare the efficiency of different products using the stars, however:

  • you must compare products of the same or similar size
  • due to the different methods of calculating the star ratings you should not compare the star rating on old label versus Zoned Energy Rating Labels.

You can find the “size” of the air conditioner in the middle of the old label, in the capacity output box.

Old label capacity output and power input


ZERL label capacity output and power input

On the Zoned Energy Rating Label you can find the size/capacity in a strip near the top of the label.


The capacity output figures on an air conditioner label will let you know the amount of cooling and heating the model can produce. These are the figures you should check are of similar value when comparing star ratings. See size matters for information about the importance of choosing the right sized product.

The power input on the old label shows you how much power is required to produce the heat or cooling shown in the capacity output box. On the old label if two products have the same star rating and same capacity output you can see which product is more efficient by choosing the one with the lower power input. On the Zoned Energy Rating Label if two products have the same capacity output you can see which product is more efficient by comparing the star ratings for the same climate zones or by comparing the total energy consumption figure for the same climate zones.

Some of the old labels may also have a separate declaration within the heating output and input box, as shown above. This number will show the heating output capacity of the product when tested at 2 degrees Celsius. The main figure is based on testing at 7 degrees. When outside temperatures are below approximately 5 degrees, outdoor units can begin to ice up and this will impact on the capacity of the unit (i.e. the amount of space it can heat). This declaration is voluntary and won’t be found on all the old labels. However if you live in an area that regularly has temperatures below 5 degrees, it can be worth looking for this figure or asking your retailer or installer.

The Zoned Energy Rating Labels have star ratings based on a range of temperatures.  Look at the map on the label and pick the climate zone you are planning on installing the air conditioner in to see how efficient its performance is.

Variable output compressor


This box on the old label shows whether the unit has a variable output compressor, commonly known as an ‘inverter’ air conditioner. These units are able to vary the speed at which they operate to suit conditions, so on a mild summer day they won’t have to work as hard as when it’s 40 degrees outside. Traditional single speed air conditioners, which are less common today, simply turn on and off as set temperatures are met.

Demand response capability


The Demand Response (AS4755) section of the old label refers to the appliances’ inbuilt capability of participating in a voluntary peak electricity demand management program. An example of such a voluntary scheme is Energex’s PeakSmart air conditioning program(link is external).

This feature is only relevant to these types of voluntary programs and will not affect normal operation.

  • Mode 1 means the appliance is capable of being turned off and back on.
  • Mode 2 means the appliance is capable of being turned down by 50%.
  • Mode 3 means the appliance is capable of being turned down by 25%.

Zoned Energy Rating Label

The Zoned Label provides a seasonal efficiency rating for three distinct climate zones across Australia and New Zealand, which provides consumers with better information, enabling them to select a product that would perform better and save energy.

COAG Energy Council officials have undertaken extensive quantitative and qualitative testing of the Zoned Label (close to 4,500 consumers, retailers and installers), which showed that the Zoned Label performs as well or better than the old air conditioner energy rating label, while providing consumers and other decision makers with better information.

An example of the Zoned Label for Australia and New Zealand is at Figure 1 below.


Size matters: Air conditioners

When considering purchasing a new air conditioner, the most important initial step is to ensure you select a suitably sized unit. Unlike other products such as televisions, where the size of the product is obvious, air conditioners typically look similar despite having wide ranges of heating and/or cooling capacities. Sizing for air conditioners is provided as a kilowatt (kW) capacity output figure (not to be confused with the power input, which is the amount of power required to produce the listed cooling and/or heating output) and you can find this on the energy rating label, as well as on the manufacturer’s product literature.

There are many different elements within your home that will impact on the size air conditioner you’ll require. These include (but are not limited to):

  • Whether you are looking to heat/cool a single room, a larger space or your entire home;
  • Size of room/home (including ceiling height);
  • External wall materials;
  • Insulation levels; and
  • How many windows you have, their glazing, shading and orientation.

Because of all these factors, it’s best to have a professional advise you on the size air conditioner to look for. There are also free online tools you can use to give yourself a rough idea, for instance the Australian Institute of Refrigeration, Air conditioning and Heating (AIRAH) offer the ‘Fair Air’ calculator.

Another element to consider is where you live. If you live in a cool climate, or where in winter temperatures are regularly below 5 degrees Celsius, it’s important that the unit you choose is able to cope in these conditions. Some models’ capacity will reduce at these times so you may find it unable to heat your space sufficiently, while others are able to continue to meet or exceed their capacity. Some manufacturers will test their products at a colder temperature and provide the capacity output for 2 degrees Celsius. This information isn’t always easy to find though, so check with your retailer or installer to see if they can assist.

Undersized units will have to work harder to heat or cool your room, and may be unable to reach and maintain your preferred temperature. Oversized products will typically be less energy efficient and they’re likely to cost more upfront as well.

Ensuring the product you have selected is an appropriate size will mean you’ll remain comfortable in your home and not use more energy than necessary.

Air conditioner FAQs

Compare models

Energy Rating Calculator

Compare the energy efficiency of fridges, televisions and computer monitors, clothes washers and dryers, dishwashers and air conditioners.

Compare models

Energy Rating Calculator app

Download the Energy Rating Calculator app from the iTunes App Store or Google Play.

Useful Resources

Visit the Australian Government's energy.gov.au website for useful information like: